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Let K be a bounded closed convex subset of a Banach space.

T : K — K is called non-expansive if

IT(z) =T < llz—yl, =»yek.

In general, K need NOT contain a fixed point for T :

Example 1. F = ¢y : all sequences (z,), x, € IR, such that x, — 0

[(@n)l = sup {|zn]}.

Define: T(x1,29,...)= (1,21,22,...)

K = unit ball of ¢g.

Then T is a non-expansive mapping K — K without a fixed point.

A mapping



Example 2. E = /¢! : all sequences (x,) such that

Yo lzn] < oo

lzalls =) lal.

Let S:¢' — ¢! be the shift operator:

S(ﬂ?n) = (0,5131,5132,. . )

K = {(2n) : 20 2 0, [an]ls = 1}.

Then S is a non-expansive mapping K — K without a fixed point.



Proposition. Let K be a bounded closed convex subset of a Banach space, and
T : K — K is non-expansive, then T has an approximate fixed point, i.e. 3 a

sequence x, € K such that ||T(x,)— x,|| — 0.

Proof: We assume 0 € K. Foreach 1 > A > 0, define

T\(x) =T(\x).

Then

175 () = Ta(y)|| = 1T (Ax) = T(Ay)|

< [[Az — Ay|| = A||z — 9|

so by the Banach Contractive Mapping Theorem, 3 x) € K such that Ty(z)) = x.
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Now

[T (zx) — zAll = [|[T(zx) — Tx(zA)]]
= |[T(xx) = T(Az)||
< lza — Az

= (1 =A)[Jzxl| = 0.



Example 3 (Alspach, PAMS 1980)

E=LY0,1]  |f]s= / £ ()]t

K:{fELl[O,l], /1f(x)da?:1, O§f§2}.
0

Then K is weakly compact and convex.
T K— K

min {2f(2t), 2},

)
VAN
~
IA

N

(Tf)(t) = {

max {2f(2¢t — 1) — 2,0},

N
N\
~

IA
—_

Then T is non-expansive, and fixed point free.



Theorem (T. Dominguez-Benavides, M.A. Japon, and S. Prus, J. of Functional
Analysis, 2004). Let C be a nonempty closed convex subset of a Banach space. Then
C' is weakly compact if and only if C has the generic fixed point property for
continuous affine maps i.e. if K C C' is a nonempty closed convex subset of C, and
T: K— K

T is continuous and affine, then I' has a fixed point in K.

Amap T: K — K isaffineifforany z,y € K, 0<A<1, T(Az+(1-Ny)=
AT(z+ (1= \)Ty).



Let X be a bounded closed convex subset of a Banach space E. A point z in

X is called a diametral point if

sup{||z —y|| : y € X} = diam (X).

The set X is said to have normal structure if every nontrivial (i.e. contains at least

two points) convex subset K of X contains a non-diametral point.

Theorem (Kirk, 65). If X is a weakly compact convex subset of E, and X has

normal structure, then every non-expansive mapping 1 : X — X has a fixed point.

Remark:
1. compact convex sets always have normal structure.
2. Alspach’s example shows that weakly compact convex sets need not have normal

structure.



A Banach space FE is said to have the weak fixed point property (weak-f.p.p.)
if for each weakly compact convex subset X C E, and T : X — X a non-expansive

mapping, X contains a fixed point for 7.

Theorem (F. Browder, 65). If E is uniformly convex, then E has the weak fixed

point property.

Theorem (B. Maurey, 81). ¢y has the weak fixed point property.

Theorem (T.C. Lim, 81). ¢; has the weak® fixed point property and hence the

weak fixed point property.
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Theorem (Llorens - Fusta and Sims, 1998).

o Let C be a closed bounded convex subset of cg. If the set C has an interior

point, then C' fails the weak f.p.p.

e There exists non-empty convex bounded subset which is compact in a locally

convex topology slightly coarser than the weak topology and fails the weak f.p.p.

Question: Does weak f.p.p. for a closed bounded convex set in ¢y characterize the

set being weakly compact?

Theorem (Dowling, Lennard, Turrett, Proceedings A.M.S. 2004). A non-empty closed
bounded convex subset of ¢y has the weak f.p.p. for non-expansive mapping <= it

is weakly compact.
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Radon Nikodym Property and Weak Fixed Point Property

Banach space FE is said to have Radon Nikodym
property (RNP) if each closed bounded convex subset D of FE is dentable i.e. for

any € > 0, there exists and x € D such that = ¢ o (D\B:(z)), where

Be(z) ={y € E; [ly —«f| <e}.

Theorem (M. Rieffel). Every weakly compact convex subset of a Banach space is

dentable.

Note: 1. L'[0,1] does not have f.p.p and R.N.P.
2. ¢! has the f.p.p. and R.N.P.

Question: Is there a relation between f.p.p. and R.N.P.?
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Theorem 1 (Mah-Ulger-Lau, PAMS 1997). Let M be a von Neumann algebra. If
M, has the RNP, then M, has the weak f.p.p.

Note: ¢y has the weak f.p.p. but not the R.N.P.

However ¢y 22 M,, M a von Neumann algebra.
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M = von Neumann algebra
C B(H)

M™ = all positive operators in M

7: Mt — [0,00] be a trace i.e. a function on M™T satisfying:

i) T(ANA)=A1(A), AX>0, AeM™*
(ii)) 7(A+B)=7(A)+7(B), A, BeMT"
(iii) 7(A*A)=71(AA*) forall Ae M
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7 is faithful if 7(A) =0, A€ M™, then A= 0.
7 is semifinite if 7(A) =sup{r(B); Be M*, B< A, 7(B) < oc}.

7 is normal if for any increasing net (A,) C M,

Ao, T A in the weak*-topology, then 7(A,) T 7(A).

Theorem 2 (Leinert - Lau, TAMS 2008). Let M be a von Neumann algebra with a

faithful normal semi-finite trace, then M, has RNP <= M, has the weak f.p.p.
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G = locally compact group with a fixed left Haar measure .

e A continuous unitary representation of G is a pair: {m, H}, where H =
Hilbert space and 7 is a continuous homomorphism from G into the group

of unitary operators on H such that for each &, n € H,
z — (m(x)¢, n)
is continuous.

o {m H} isirreducible if {0} and H are the only = (G)-invariant subspaces of
H.

o {m H} is atomicif {m,H} =2 > &{n., H,} where each m, is a irreducible

representation.
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L*(G) = all measurable f:G — C

/|fx2d>\a:' ) < o0
9= [ H@)5)

L?(G) is a Hilbert space.

Left regular representation:

{p, L*(G)},
p: G — B(L*(@)),

p(z)h(y) = h(z™ty), = € G, h € L*(G).
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G = locally compact group
A(G) = Fourier algebra of G
= subalgebra of Cy(G)
consisting of all functions ¢ :
¢(x) =(p(x)h, k), h,k € L*(G)
p(x)h(y) =h(z""y)
ol =sup { | 3= Aol
i=1
>8] co-

|3 Aot

<1}
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P. Eymard (1964):
A(G)* =VN(G)
= von Neumann algebra in B(Lz(G))

generated by {p(x):x € G}

= (p(z):x € G)WVOT

If G is abelian and G = dual group of GG, then

AG) 2 LYG), VN(G)=L>G)
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When G is abelian, G = dual group

T={\eC |\=1}

A~ P

T=(Z,4+), Z=T.
Hence A(Z) = LY(T).

Theorem (Alspach). If G = (Z,+), then A(Z) does not have weak f.p.p.

Question: Given a locally compact group G, when does A(G) have the weak f.p.p.?
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Theorem (Mah - Lau, TAMS 1988). If G is a compact group, then A(G) has the
weak f.p.p.
Theorem (Mah - Ulger - Lau, PAMS 1997).

a) If G is abelian, then A(G) has the weak f.p.p. <= G is compact.

b) If G is discrete and A(G) has the weak f.p.p., then G cannot contain an

infinite abelian subgroup. In particular, each element in G must have finite

order.
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Example: G = all 2 x 2 matrices

Ty
T

with =,y € R, = #0. (“ax+ b’-group).

Topologize G as a subset of IR? with multiplication

(2, y) o (u,v) = (zu, v +y).

Then G is a non-compact group. But A(G) has Radon Nikodym Property (K. Tay-

lor). Hence it must have weak f.p.p.
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A locally compact group G is called an [IN]-group if there is a compact neigh-

borhood U of the identity e such that z Uz =U for all = € G.

Example: compact groups
discrete groups

abelian groups

Theorem 3 (Leinert - Lau, TAMS 2008). Let G be an [IN]-group. TFAE:
(a) G is compact
(b) A(G) has weak f.p.p.

(¢) A(G) has RNP
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Corollary. Let G be a discrete group. Then A(G) has the weak f.p.p. < G is

finite.

Proof: If G is a [SIN]-group, then VN(G) is finite. Apply Theorems 1 and 2.
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e A (discrete) semigroup group S is left reversible if aSNbS # () for any a,b, € S.
e S commutative = § is left reversible.

e We say that a Banach space E has the weak f.p.p. for
commutative (left reversible) semigroup if whenever S is a commutative
(resp. left reversible) semigroup and K is a weakly compact convex subset of
E foron K and § ={T,s:s € S} is a representation of S as non-expansive

mappings from K into K, then K has a common fixed point for §.
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Theorem (R. Bruck, 74). If a Banach space E has the weak f.p.p., then FE has the

weak f.p.p. for commutative semigroup.

Corollary. If G is a locally compact group such that A(G) has the RNP, then

A(G) has the weak fixed point property for commutative semigroups.

Theorem 4 (Lau-Mah, JFA 2010). Let G be an [IN]-group TFAE.
(a) G is compact.

(b) A(G) has the weak f.p.p. for left reversible semigroup.
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Theorem (Garcia-Falset). If H is a Hilbert space K(H) = C*-algebra of compact

operators on H has the weak fixed point property.

e If G is a compact group, then

0*(G) = [p(F): T € L@)} € K(L*(@)).

Hence C*(G) has the weak fixed point property. Consequently the weak fixed
point property for commutative semigroups.
Problem 1. If G is a compact group, does C*(G) have the weak f.p.p. for left

reversible semigroups?

Proposition (Lau-Mah-Ulger, PAMS 1997). VN(G) has the weak f.p.p. for left

reversible semigroup if and only if G is finite.

Problem 2 (Bruck). If a Banach space E has the weak f.p.p., does it always have

the weak f.p.p. for left reversible (or amenable) semigroup?
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Fixed Point Property

Let E be a Banach space, and K be a non-empty bounded closed convex subset
of E. We say that K has the fixed point property (f.p.p.) if every nonexpansive
mapping 1': K — K has a fixed point. We say that E has the fixed point property

if every bounded closed convex subset K of E has the fixed point propety.

e (P, 1< p< oo, has the fixed point property

e /! has the weak fixed point property but not the fixed point property

e A closed subspace of L'[0,1] has the fixed point property if and only if it is

reflexive.
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Theorem 5 (Leinert and Lau, TAMS 2008). For G locally compact, if a nonzero

closed ideal of A has the f.p.p., then G is discrete.

Corollary. A(G) has the f.p.p. < G is finite.

Proof. By above, G must be discrete. Since f.p.p. = weak f.p.p., it follows that

A(G) has the weak f.p.p. Consequently, it must be finite.
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Theorem (P.K. Lin, Nonlinear Analysis 2008). ¢! can be renormed to have the f.p.p.

Theorem (C. Hernandez Lineares and M.A. Japon, JFA 2010). If G is a separable

compact group, then A(G) can be renormed to have the f.p.p.

Remark (Dowling, Lennard and Turett, TMAA 1996): This theorem is not true for

non-separable groups.
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Weak* Fixed Point Property

A dual Banach space F issaid to have weak*-f.p.p. if every weak*-compact
convex subset K of FE has the fixed point property.

E is said to have the weak* Kadec-Klee property if the weak*-topology

and norm topology agree on the unit sphere.

Theorem (T.C. Lim, Pacific J. Math. 1980). ¢; = ¢ has the weak*-f.p.p. property.

Theorem (C. Lennard, PAMS 1990). Let H be a Hilbert space. Then B(H), has

the weak*-f.p.p.
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G—locally compact group
P(G) = continuous positive definite
functions on G

i.e. all continuous ¢ :G — € such that

— _ X1,...,Tn € G,
D ANb(wizyt) >0, A;-l oA ECD

; ) is positive

i.e. then x n matrix (¢(z;x
¢ € P(G) <= there exists a continuous

unitary representation {m, H}

of G, neH, such that

o(z) = (m(x)n,n), =z€G.
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Let B(G) = (P(G)) C CB(G) (Fourier Stieltjes algebra of G)

Equip B(G) withnorm |ul| =sup {| [ f(t)u(t)dt|; f € L'(G) and |||f]|] <1}

where
£l = sup{||7()||; {w, H} continuous unitary representation of G'}

Let C*(G) denote the completion of (L'(G),]||-|||). Then C*(G) is a C*-algebra
(the group C*-algebra of G), and B(G) = C*(G)*.

e When G is amenable, then |||f||| =|p(f)|, where p is the left regular
representation of G.

AN

e When G is abelian, B(G) =2 M(G) (measure algebra of @), and
C*(G) = Cy(G).
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A dual Banach space FE is said to have the weak * -Kadec-Klee property if the

norm and weak * -topology agree on F; = {x € F; ||z|| = 1}.

Theorem (Lau-Mah, TAMS 88). (a) For a locally compact group G, the mea-
sure algebra M (G) has the weak® fpp <= G is discrete <= M(G) has the

weak”-Kadec-Klee property.
(b) If G is compact, then B(G) = C*(G)* has the weak*-fpp.

Theorem (Lau-Mah, TAMS 88/Bekka-Kaniuth-Lau-Schlichting, TAMS 1998). Let G

be a locally compact group. Then G is compact <= B((G) has the weak* Kadec Klee

property.

Theorem 6 (Fendler-Lau-Leinert, JFA 2013). If G is a locally compact group and

B(G) has the w*-f.p.p. then G is compact.
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Theorem (T.C. Lim, Pacific J. Math. 1980). The dual Banach space B(T) = (1(Z)

has the weak* f.p.p. for left reversible semigroup.

Theorem 7 (Fendler-Lau-Leinert, JFA 2013). For any compact group G, B(G) has

the weak™ f.p.p. for left reversible semigroups.

When G is separable, Theorem 6 and Theorem 7 were proved by Lau and Mah (JFA,
2010).
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Key Lemma

Lemma A. Let G be a compact group, and let {D, : a € A) be a decreasing net
of bounded subsets of B(G), and {¢,, :m € M}, be a weak® convergent bounded

net with weak® limit ¢. Then

lim sup lim sup{{|¢m — || : ¢ € Do} = lim sup{||¢ — ]| : 1 € Da}

+ limsup |6 — @l
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Let C be a nonempty subset of a Banach space X and {D, : a € A} be a

decreasing net of bounded nonempty subsets of X. For each z € C, and a € A, let

ro(r) = sup{llz =yl : y € Daj,
r(x) =limry(z) = inf ry (),

r=inf{r(z): x € C}.
The set (possibly empty)
AC{Dy:a € A})={x e C :r(x) =1}

is called the asymptotic center of {D, : « € A} with respect to C' and r is called
the asymptotic radius of {D, : « € A} with respect to C.
(M. Edelstein, Bull. A.M.S. 1972)
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Theorem 8 (Fendler-Lau-Leinert, JFA 2013). Let G be a compact group. Let C be
a nonempty weak® closed convex subset of B(G) and {D, : « € A} be a decreasing
net of nonempty bounded subsets of C. Let r(x) be as defined above. Then for each
s>0, {xeC:r(x)<s} is weak® compact and convex, and the asymptotic center

of {D, : «a € A} with respect to C' is a nonempty norm compact convex subset of

C.
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Theorem (Narcisse Randrianantoania, JFA 2010). For any G :

(a) A(G) has the weak f.p.p. <= A(G) has the R.N.P. <= The left regular
representation of G is atomic. In this case A(G) has the weak f.p.p. for left

reversible semigroups.

(b) B(G) has the weak f.p.p. <= B(G) has R.N.P. <= every continuous unitary
representation of G is atomic. In this case B(G) has the weak f.p.p. for left

reversible semigroups.

Theorem 8 answers the following problem: For any locally compact group G does

R.N.P. on B(G) imply weak® f.p.p.?
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Open problem 3. Let G be alocally compact group. Let B,(G) denote the reduced
Fourier-Stieltjes algebra of B(G), i.e. B,(G) isthe weak* closure of Cyo(G)NB(G).
Then B,(G) = C,(G)*. Does the weak* fixed point property on B,(G) imply G
is compact? This is true when G is amenable by Theorem 6, since B(G) = B,(G)

in this case.

Open problem 4. Let G be a locally compact group. Does the asymptotic centre

property on B,(G) imply that G is compact?

Theorem (Fendler and Leinert, 2013). For any von Neumann algebra, if M, has the

RNP, then M, has the weak fixed point property.
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Problem: When G is a topological group,

P(G) = continuous positive definite functions on G

B(G) = linear span of P(G).

Theorem (Lau-Ludwig, Advances of Math 2012). B(G)* is a von Neumann algebra.

Problem 5: When does B(G) have the weak fixed point property?
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APPENDIX A

A Banach space X is said to be uniformly convex if for each 0 < ¢ < 2,

36 > 0 such that for any z, y € X,

2| < 1
Iyl <1 |52 <

lz =yl >

42



REFERENCES

D. Alspach, A fized point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424.

M.B. Bekka, E. Kaniuth, A.T. Lau and G. Schlichting, Weak*-closedness of subspace of
Fourier-Stieltjes algebras and weak® continuity of the restriction map, Transactions A.M.S.
350 (1998), 2277-2296.

T.D. Benavides, P.M.A. Japén and S. Prus, Weak compactness and fixred point property for
affine mappings, J. Funct. Anal. 209 (1) (2004), 1-15.

M. Edelstein, The construction of an asymptotic center with a fizred-point propety, Bull. Amer.
Math. Soc. 78 (1972), 206-208.

G. Fendler, A.T. Lau and M. Leinert, Weak™ fized point property and asymptotic center for the
Fourier-Stieltjes algebra of a locally compact group, J. of Functional Analysis (2013), 288-302.

G. Fendler and M. Leinert, Separable C* algebras and weak™ fixed point properties, Proba-
bility and Mathematical Statistics 33 (2) (2013), 233-241.

C.A.H. Linares and M.A. Japon, A renorming in some Banach spaces with applications to fixed
point theory, J. Funct. Anal. 258 (10) (2010), 3452-3468.

C.A.H. Linares and M.A. Japon, Rays of equivalent norms with the fixzed point property in some
nonreflexive Banach spaces (2013 preprint).

43



[13]

[14]

[15]

[16]

[17]

A.T. Lau and M. Leinert, Fized point property and the Fourier algebra of a locally compact
group, Transactions AMS 360 (2008), 6389-6402.

A.T.-M. Lau and J. Ludwig, Fourier Stieltjes algebra for a topological group, Advances in Math.
229 (2012), 2000-2023.

A.T. Lau and P.F. Mah, Quasi-normal structures for certain spaces of operators on a Hilbert
space, Pacific J. Math. 121 (1986), 109-118.

A.T. Lau and P.F. Mah, Normal structure in Banach spaces associated with a locally compact
group, Transactions A.M.S. 310 (1988), 341-353.

A.T. Lau, P.F. Mah and A. Ulger, Fized point property and normal structure for Banach spaces
associated to locally compact groups, Proceedings A.M.S. 125 (1997), 2021-2027.

A.T. Lau and P.F. Mah, Fized point property for Banach algebras associated to locally compact
groups, J. of Functional Analysis 258 (2010), 357-372.

A.T. Lau and A. Ulger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras

of locally compact groups, Arens reqularity and related problems, Trans. Amer. Math. Soc. 337
(1993), 321-359.

C. Lennard, C7 is uniformly Kadec-Klee, Proceedings A.M.S. 109 (1990), 71-77.

T.C. Lim, Asymptotic centres and nonexpansive mappings in some conjugate spaces, Pacific J.
Math. 90 (1980), 135-143.

44



[18] N. Randrianantoanina, Fized point properties of semigroups of nonexpansive mappings, Journal
of Functional Analysis 258 (2010), 3801-3817.

45



