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Let K be a bounded closed convex subset of a Banach space. A mapping

T : K → K is called non-expansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, x, y ∈ K.

In general, K need NOT contain a fixed point for T :

Example 1. E = c0 : all sequences (xn), xn ∈ IR, such that xn → 0

‖(xn)‖ = sup {|xn|}.

Define: T (x1, x2, . . . ) = (1, x1, x2, . . . )

K = unit ball of c0.

Then T is a non-expansive mapping K → K without a fixed point.
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Example 2. E = `1 : all sequences (xn) such that
∑
|xn| <∞

‖xn‖1 =
∑
|xn|.

Let S : `1 → `1 be the shift operator:

S(xn) = (0, x1, x2, . . . )

K = {(xn) : xn ≥ 0, ‖xn‖1 = 1}.

Then S is a non-expansive mapping K → K without a fixed point.
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Proposition. Let K be a bounded closed convex subset of a Banach space, and

T : K → K is non-expansive, then T has an approximate fixed point, i.e. ∃ a

sequence xn ∈ K such that ‖T (xn)− xn‖ → 0.

Proof: We assume 0 ∈ K. For each 1 > λ > 0, define

Tλ(x) = T (λx).

Then

‖Tλ(x)− Tλ(y)‖ = ‖T (λx)− T (λy)‖

≤ ‖λx− λy‖ = λ‖x− y‖

so by the Banach Contractive Mapping Theorem, ∃ xλ ∈ K such that Tλ(xλ) = xλ.
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Now

‖T (xλ)− xλ‖ = ‖T (xλ)− Tλ(xλ)‖

= ‖T (xλ)− T (λxλ)‖

≤ ‖xλ − λxλ‖

= (1− λ)‖xλ‖ → 0.
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Example 3 (Alspach, PAMS 1980)

E = L1[0, 1] ‖f‖1 =
∫ 1

0

|f(t)|dt

K =
{
f ∈ L1[0, 1],

∫ 1

0

f(x)dx = 1, 0 ≤ f ≤ 2
}
.

Then K is weakly compact and convex.

T : K → K

(Tf)(t) =

{
min {2f(2t), 2}, 0 ≤ t ≤ 1

2

max {2f(2t− 1)− 2, 0}, 1
2 < t ≤ 1.

Then T is non-expansive, and fixed point free.
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Theorem (T. Dominguez-Benavides, M.A. Japon, and S. Prus, J. of Functional

Analysis, 2004). Let C be a nonempty closed convex subset of a Banach space. Then

C is weakly compact if and only if C has the generic fixed point property for

continuous affine maps i.e. if K ⊆ C is a nonempty closed convex subset of C, and

T : K → K

T is continuous and affine, then T has a fixed point in K.

A map T : K → K is affine if for any x, y ∈ K, 0 ≤ λ ≤ 1, T
(
λx+(1−λ)y

)
=

λT
(
x+ (1− λ)Ty

)
.
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Let X be a bounded closed convex subset of a Banach space E. A point x in

X is called a diametral point if

sup {‖x− y‖ : y ∈ X} = diam (X).

The set X is said to have normal structure if every nontrivial (i.e. contains at least

two points) convex subset K of X contains a non-diametral point.

Theorem (Kirk, 65). If X is a weakly compact convex subset of E, and X has

normal structure, then every non-expansive mapping T : X 7→ X has a fixed point.

Remark:

1. compact convex sets always have normal structure.

2. Alspach’s example shows that weakly compact convex sets need not have normal

structure.
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A Banach space E is said to have the weak fixed point property (weak-f.p.p.)

if for each weakly compact convex subset X ⊆ E, and T : X → X a non-expansive

mapping, X contains a fixed point for T.

Theorem (F. Browder, 65). If E is uniformly convex, then E has the weak fixed

point property.

Theorem (B. Maurey, 81). c0 has the weak fixed point property.

Theorem (T.C. Lim, 81). `1 has the weak∗ fixed point property and hence the

weak fixed point property.
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Theorem (Llorens - Fusta and Sims, 1998).

• Let C be a closed bounded convex subset of c0. If the set C has an interior

point, then C fails the weak f.p.p.

• There exists non-empty convex bounded subset which is compact in a locally

convex topology slightly coarser than the weak topology and fails the weak f.p.p.

Question: Does weak f.p.p. for a closed bounded convex set in c0 characterize the

set being weakly compact?

Theorem (Dowling, Lennard, Turrett, Proceedings A.M.S. 2004). A non-empty closed

bounded convex subset of c0 has the weak f.p.p. for non-expansive mapping ⇐⇒ it

is weakly compact.
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Radon Nikodym Property and Weak Fixed Point Property

Banach space E is said to have Radon Nikodym

property (RNP) if each closed bounded convex subset D of E is dentable i.e. for

any ε > 0, there exists and x ∈ D such that x /∈ co
(
D\Bε(x)

)
, where

Bε(x) = {y ∈ E; ‖y − x‖ < ε}.

Theorem (M. Rieffel). Every weakly compact convex subset of a Banach space is

dentable.

Note: 1. L1[0, 1] does not have f.p.p and R.N.P.

2. `1 has the f.p.p. and R.N.P.

Question: Is there a relation between f.p.p. and R.N.P.?
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Theorem 1 (Mah-Ülger-Lau, PAMS 1997). Let M be a von Neumann algebra. If

M∗ has the RNP, then M∗ has the weak f.p.p.

Note: c0 has the weak f.p.p. but not the R.N.P.

However c0 6∼= M∗, M a von Neumann algebra.
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M = von Neumann algebra

⊆ B(H)

M+ = all positive operators in M

τ : M+ → [0,∞] be a trace i.e. a function on M+ satisfying:

(i) τ(λA) = λτ(A), λ ≥ 0, A ∈M+

(ii) τ(A+B) = τ(A) + τ(B), A, B ∈M+

(iii) τ(A∗A) = τ(AA∗) for all A ∈M
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τ is faithful if τ(A) = 0, A ∈M+, then A = 0.

τ is semifinite if τ(A) = sup{τ(B); B ∈M+, B ≤ A, τ(B) <∞}.

τ is normal if for any increasing net (Aα) ⊆M+,

Aα ↑ A in the weak∗-topology, then τ(Aα) ↑ τ(A).

Theorem 2 (Leinert - Lau, TAMS 2008). Let M be a von Neumann algebra with a

faithful normal semi-finite trace, then M∗ has RNP ⇐⇒M∗ has the weak f.p.p.
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G = locally compact group with a fixed left Haar measure λ.

• A continuous unitary representation of G is a pair: {π,H}, where H =

Hilbert space and π is a continuous homomorphism from G into the group

of unitary operators on H such that for each ξ, n ∈ H,

x→ 〈π(x)ξ, n〉

is continuous.

• {π,H} is irreducible if {0} and H are the only π(G)-invariant subspaces of

H.

• {π,H} is atomic if {π,H} ∼=
∑
⊕{πα, Hα} where each πα is a irreducible

representation.
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L2(G) = all measurable f : G→ C
∫
|f(x)|2dλ(x) <∞

〈f, g〉 =
∫
f(x) g(x) dλ(x)

L2(G) is a Hilbert space.

Left regular representation:

{ρ, L2(G)},

ρ : G 7→ B
(
L2(G)

)
,

ρ(x)h(y) = h(x−1y), x ∈ G, h ∈ L2(G).
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G = locally compact group

A(G) = Fourier algebra of G

= subalgebra of C0(G)

consisting of all functions φ :

φ(x) =〈ρ(x)h, k〉, h, k ∈ L2(G)

ρ(x)h(y) =h(x−1y)

‖φ‖ =sup
{ ∣∣∣

n∑

i=1

λiφ(xi)
∣∣∣ :

∥∥∥
n∑

i=1

λiρ(xi)
∥∥∥ ≤ 1

}

≥‖φ‖∞.
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P. Eymard (1964):

A(G)∗ = V N(G)

= von Neumann algebra in B
(
L2(G)

)

generated by {ρ(x) : x ∈ G}

= 〈ρ(x) : x ∈ G〉WOT

If G is abelian and Ĝ = dual group of G, then

A(G) ∼= L1(Ĝ), V N(G) ∼= L∞(Ĝ)
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When G is abelian, Ĝ = dual group

T = {λ ∈ C, |λ| = 1}

T̂ = (Z,+), Ẑ = T.

Hence A(Z) ∼= L1(T).

Theorem (Alspach). If G = (Z,+), then A(Z) does not have weak f.p.p.

Question: Given a locally compact group G, when does A(G) have the weak f.p.p.?
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Theorem (Mah - Lau, TAMS 1988). If G is a compact group, then A(G) has the

weak f.p.p.

Theorem (Mah - Ülger - Lau, PAMS 1997).

a) If G is abelian, then A(G) has the weak f.p.p. ⇐⇒ G is compact.

b) If G is discrete and A(G) has the weak f.p.p., then G cannot contain an

infinite abelian subgroup. In particular, each element in G must have finite

order.
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Example: G = all 2× 2 matrices

[
x y

0 1

]
←→ (x, y)

with x, y ∈ R, x 6= 0. (“ax+ b”-group).

Topologize G as a subset of IR2 with multiplication

(x, y) ◦ (u, v) = (xu, xv + y).

Then G is a non-compact group. But A(G) has Radon Nikodym Property (K. Tay-

lor). Hence it must have weak f.p.p.
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A locally compact group G is called an [IN]-group if there is a compact neigh-

borhood U of the identity e such that x−1Ux = U for all x ∈ G.

Example: compact groups

discrete groups

abelian groups

Theorem 3 (Leinert - Lau, TAMS 2008). Let G be an [IN]-group. TFAE:

(a) G is compact

(b) A(G) has weak f.p.p.

(c) A(G) has RNP
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Corollary. Let G be a discrete group. Then A(G) has the weak f.p.p. ⇐⇒ G is

finite.

Proof: If G is a [SIN]-group, then V N(G) is finite. Apply Theorems 1 and 2.
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• A (discrete) semigroup group S is left reversible if aS∩bS 6= ∅ for any a, b,∈ S.

• S commutative =⇒ S is left reversible.

• We say that a Banach space E has the weak f.p.p. for

commutative (left reversible) semigroup if whenever S is a commutative

(resp. left reversible) semigroup and K is a weakly compact convex subset of

E for on K and S = {Ts : s ∈ S} is a representation of S as non-expansive

mappings from K into K, then K has a common fixed point for S.
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Theorem (R. Bruck, 74). If a Banach space E has the weak f.p.p., then E has the

weak f.p.p. for commutative semigroup.

Corollary. If G is a locally compact group such that A(G) has the RNP, then

A(G) has the weak fixed point property for commutative semigroups.

Theorem 4 (Lau-Mah, JFA 2010). Let G be an [IN]-group TFAE.

(a) G is compact.

(b) A(G) has the weak f.p.p. for left reversible semigroup.
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Theorem (Garcia-Falset). If H is a Hilbert space K(H) = C∗-algebra of compact

operators on H has the weak fixed point property.

• If G is a compact group, then

C∗(G) = {ρ(f); f ∈ L1(G)} ⊆ K
(
L2(G)

)
.

Hence C∗(G) has the weak fixed point property. Consequently the weak fixed

point property for commutative semigroups.

Problem 1. If G is a compact group, does C∗(G) have the weak f.p.p. for left

reversible semigroups?

Proposition (Lau-Mah-Ülger, PAMS 1997). V N(G) has the weak f.p.p. for left

reversible semigroup if and only if G is finite.

Problem 2 (Bruck). If a Banach space E has the weak f.p.p., does it always have

the weak f.p.p. for left reversible (or amenable) semigroup?

27



Fixed Point Property

Let E be a Banach space, and K be a non-empty bounded closed convex subset

of E. We say that K has the fixed point property (f.p.p.) if every nonexpansive

mapping T : K → K has a fixed point. We say that E has the fixed point property

if every bounded closed convex subset K of E has the fixed point propety.

• `p, 1 < p <∞, has the fixed point property

• `1 has the weak fixed point property but not the fixed point property

• A closed subspace of L1[0, 1] has the fixed point property if and only if it is

reflexive.
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Theorem 5 (Leinert and Lau, TAMS 2008). For G locally compact, if a nonzero

closed ideal of A has the f.p.p., then G is discrete.

Corollary. A(G) has the f.p.p. ⇐⇒ G is finite.

Proof. By above, G must be discrete. Since f.p.p. =⇒ weak f.p.p., it follows that

A(G) has the weak f.p.p. Consequently, it must be finite.
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Theorem (P.K. Lin, Nonlinear Analysis 2008). `1 can be renormed to have the f.p.p.

Theorem (C. Hernandez Lineares and M.A. Japon, JFA 2010). If G is a separable

compact group, then A(G) can be renormed to have the f.p.p.

Remark (Dowling, Lennard and Turett, TMAA 1996): This theorem is not true for

non-separable groups.
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Weak∗ Fixed Point Property

A dual Banach space E is said to have weak∗-f.p.p. if every weak∗-compact

convex subset K of E has the fixed point property.

E is said to have the weak∗ Kadec-Klee property if the weak∗-topology

and norm topology agree on the unit sphere.

Theorem (T.C. Lim, Pacific J. Math. 1980). `1 = c∗0 has the weak∗-f.p.p. property.

Theorem (C. Lennard, PAMS 1990). Let H be a Hilbert space. Then B(H)∗ has

the weak∗-f.p.p.
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G–locally compact group

P (G) = continuous positive definite

functions on G

i.e. all continuous φ : G→ C such that
∑

λiλjφ(xix
−1
j ) ≥ 0, x1, . . . , xn ∈ G,

λi, . . . , λn ∈ C

i.e. the n× n matrix
(
φ(xix

−1
j )

)
is positive

φ ∈ P (G)⇐⇒ there exists a continuous

unitary representation {π,H}

of G, η ∈ H, such that

φ(x) = 〈π(x)η, η〉, x ∈ G.
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Let B(G) = 〈P (G)〉 ⊆ CB(G) (Fourier Stieltjes algebra of G)

Equip B(G) with norm ‖u‖ = sup
{∣∣ ∫

f(t)u(t)dt
∣∣; f ∈ L1(G) and |||f ||| ≤ 1

}

where

|||f ||| = sup{‖π(f)‖; {π,H} continuous unitary representation of G}

Let C∗(G) denote the completion of
(
L1(G), ||| · |||). Then C∗(G) is a C∗-algebra

(the group C∗-algebra of G), and B(G) = C∗(G)∗.

• When G is amenable, then |||f ||| = ‖ρ(f)‖, where ρ is the left regular

representation of G.

• When G is abelian, B(G) ∼= M(Ĝ) (measure algebra of Ĝ), and

C∗(G) ∼= C0(Ĝ).
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A dual Banach space E is said to have the weak ∗ -Kadec-Klee property if the

norm and weak ∗ -topology agree on E1 = {x ∈ E; ‖x‖ = 1}.

Theorem (Lau-Mah, TAMS 88). (a) For a locally compact group G, the mea-

sure algebra M(G) has the weak∗ fpp ⇐⇒ G is discrete ⇐⇒ M(G) has the

weak∗-Kadec-Klee property.

(b) If G is compact, then B(G) = C∗(G)∗ has the weak∗-fpp.

Theorem (Lau-Mah, TAMS 88/Bekka-Kaniuth-Lau-Schlichting, TAMS 1998). Let G

be a locally compact group. Then G is compact ⇐⇒ B(G) has the weak∗Kadec Klee

property.

Theorem 6 (Fendler-Lau-Leinert, JFA 2013). If G is a locally compact group and

B(G) has the w∗-f.p.p. then G is compact.
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Theorem (T.C. Lim, Pacific J. Math. 1980). The dual Banach space B(T) ∼= `1(Z)

has the weak∗ f.p.p. for left reversible semigroup.

Theorem 7 (Fendler-Lau-Leinert, JFA 2013). For any compact group G, B(G) has

the weak∗ f.p.p. for left reversible semigroups.

When G is separable, Theorem 6 and Theorem 7 were proved by Lau and Mah (JFA,

2010).
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Key Lemma

Lemma A. Let G be a compact group, and let {Dα : α ∈ Λ) be a decreasing net

of bounded subsets of B(G), and {φm : m ∈ M}, be a weak∗ convergent bounded

net with weak∗ limit φ. Then

lim sup
m

lim
α

sup{‖φm − ψ‖ : ψ ∈ Dα} = lim
α

sup{‖φ− ψ‖ : ψ ∈ Dα}

+ lim sup
m

‖φm − φ‖.
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Let C be a nonempty subset of a Banach space X and {Dα : α ∈ Λ} be a

decreasing net of bounded nonempty subsets of X. For each x ∈ C, and α ∈ Λ, let

rα(x) = sup {‖x− y‖ : y ∈ Dα},

r(x) = lim
α
rα(x) = inf

α
rα(x),

r = inf {r(x) : x ∈ C}.

The set (possibly empty)

AC({Dα : α ∈ Λ}) = {x ∈ C : r(x) = r}

is called the asymptotic center of {Dα : α ∈ Λ} with respect to C and r is called

the asymptotic radius of {Dα : α ∈ Λ} with respect to C.

(M. Edelstein, Bull. A.M.S. 1972)
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Theorem 8 (Fendler-Lau-Leinert, JFA 2013). Let G be a compact group. Let C be

a nonempty weak∗ closed convex subset of B(G) and {Dα : α ∈ Λ} be a decreasing

net of nonempty bounded subsets of C. Let r(x) be as defined above. Then for each

s ≥ 0, {x ∈ C : r(x) ≤ s} is weak∗ compact and convex, and the asymptotic center

of {Dα : α ∈ Λ} with respect to C is a nonempty norm compact convex subset of

C.
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Theorem (Narcisse Randrianantoania, JFA 2010). For any G :

(a) A(G) has the weak f.p.p. ⇐⇒ A(G) has the R.N.P. ⇐⇒ The left regular

representation of G is atomic. In this case A(G) has the weak f.p.p. for left

reversible semigroups.

(b) B(G) has the weak f.p.p. ⇐⇒ B(G) has R.N.P. ⇐⇒ every continuous unitary

representation of G is atomic. In this case B(G) has the weak f.p.p. for left

reversible semigroups.

Theorem 8 answers the following problem: For any locally compact group G does

R.N.P. on B(G) imply weak∗ f.p.p.?
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Open problem 3. Let G be a locally compact group. Let Bρ(G) denote the reduced

Fourier-Stieltjes algebra of B(G), i.e. Bρ(G) is the weak∗ closure of C00(G)∩B(G).

Then Bρ(G) = Cρ(G)∗. Does the weak∗ fixed point property on Bρ(G) imply G

is compact? This is true when G is amenable by Theorem 6, since B(G) = Bρ(G)

in this case.

Open problem 4. Let G be a locally compact group. Does the asymptotic centre

property on Bρ(G) imply that G is compact?

Theorem (Fendler and Leinert, 2013). For any von Neumann algebra, if M∗ has the

RNP, then M∗ has the weak fixed point property.
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Problem: When G is a topological group,

P (G) = continuous positive definite functions on G

B(G) = linear span of P (G).

Theorem (Lau-Ludwig, Advances of Math 2012). B(G)∗ is a von Neumann algebra.

Problem 5: When does B(G) have the weak fixed point property?
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APPENDIX A

A Banach space X is said to be uniformly convex if for each 0 < ε ≤ 2,

∃ δ > 0 such that for any x, y ∈ X,

‖x‖ ≤ 1

‖y‖ ≤ 1

‖x− y‖ > ε





∥∥∥x+ y

2

∥∥∥ ≤ δ
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